Donut chart with ggplot2



The ggplot2 package allows to build donut chart with R. This post describes how, providing explanation and reproducible code.

Donut section Warning

Most basic doughnut chart with ggplot2


The ggplot2 package allows to build donut charts. Note however that this is possible thanks a hack, since no specific function has been created for this kind of chart. (This is voluntary, to avoid donut charts that are dataviz bad practice)

Here is the process: - input data provides a numeric variable for a set of entities - absolute numeric values must be translated to proportion - group positions must be stacked: we’re gonna display them one after the other - geom_rect() is used to plot each group as a rectangle - coord_polar() is used to switch from stacked rectangles to a ring - xlim() allows to switch from pie to donut: it adds the empty circle in the middle

# load library
library(ggplot2)
 
# Create test data.
data <- data.frame(
  category=c("A", "B", "C"),
  count=c(10, 60, 30)
)
 
# Compute percentages
data$fraction = data$count / sum(data$count)

# Compute the cumulative percentages (top of each rectangle)
data$ymax = cumsum(data$fraction)

# Compute the bottom of each rectangle
data$ymin = c(0, head(data$ymax, n=-1))
 
# Make the plot
ggplot(data, aes(ymax=ymax, ymin=ymin, xmax=4, xmin=3, fill=category)) +
     geom_rect() +
     coord_polar(theta="y") + # Try to remove that to understand how the chart is built initially
     xlim(c(2, 4)) # Try to remove that to see how to make a pie chart

Customization


Here are a couple of things you can do improve your donut chart style:

  • use theme_void() to get rid of the unnecessary background, axis, labels and so on.
  • use a better color palette
  • don’t use a legend, add labels to groups directly

# load library
library(ggplot2)

# Create test data.
data <- data.frame(
  category=c("A", "B", "C"),
  count=c(10, 60, 30)
)
 
# Compute percentages
data$fraction <- data$count / sum(data$count)

# Compute the cumulative percentages (top of each rectangle)
data$ymax <- cumsum(data$fraction)

# Compute the bottom of each rectangle
data$ymin <- c(0, head(data$ymax, n=-1))

# Compute label position
data$labelPosition <- (data$ymax + data$ymin) / 2

# Compute a good label
data$label <- paste0(data$category, "\n value: ", data$count)

# Make the plot
ggplot(data, aes(ymax=ymax, ymin=ymin, xmax=4, xmin=3, fill=category)) +
  geom_rect() +
  geom_label( x=3.5, aes(y=labelPosition, label=label), size=6) +
  scale_fill_brewer(palette=4) +
  coord_polar(theta="y") +
  xlim(c(2, 4)) +
  theme_void() +
  theme(legend.position = "none")

Donut thickness


It is important to understand that donut chart are just stacked rectangles that are made circular thanks to coord_polar.

Thus, the empty circle that makes it a donut chart is just the space between the initial Y axis and the left part of the rectangle.

  • If xlim left boundary is big, no empty circle. You get a pie chart
  • If xlim is low, the ring becomes thinner.

If you don’t get it, just plot the chart without coord_polar()

# load library
library(ggplot2)

# Create test data.
data <- data.frame(
  category=c("A", "B", "C"),
  count=c(10, 60, 30)
)
 
# Compute percentages
data$fraction <- data$count / sum(data$count)

# Compute the cumulative percentages (top of each rectangle)
data$ymax <- cumsum(data$fraction)

# Compute the bottom of each rectangle
data$ymin <- c(0, head(data$ymax, n=-1))

# Compute label position
data$labelPosition <- (data$ymax + data$ymin) / 2

# Compute a good label
data$label <- paste0(data$category, "\n value: ", data$count)

# Make the plot
ggplot(data, aes(ymax=ymax, ymin=ymin, xmax=4, xmin=3, fill=category)) +
  geom_rect() +
  geom_text( x=2, aes(y=labelPosition, label=label, color=category), size=6) + # x here controls label position (inner / outer)
  scale_fill_brewer(palette=3) +
  scale_color_brewer(palette=3) +
  coord_polar(theta="y") +
  xlim(c(-1, 4)) +
  theme_void() +
  theme(legend.position = "none")

Related chart types


Grouped and Stacked barplot
Treemap
Doughnut
Pie chart
Dendrogram
Circular packing



❤️ 10 best R tricks ❤️

👋 After crafting hundreds of R charts over 12 years, I've distilled my top 10 tips and tricks. Receive them via email! One insight per day for the next 10 days! 🔥