Interactive bubble chart



This post explains how to build an interactive bubble chart with R, using ggplot2 and the ggplotly() function of the plotly package.

Bubble section Data to Viz

Most basic bubble chart with geom_point()


This post follows the previous step by step description of building bubble chart with ggplot2.

The idea is to turn the chart interactive:

  • You can zoom by selecting an area of interest
  • Hover a circle to get information about it
  • Export to png
  • Slide axis
  • Double click to re-initialize.

This is done thanks to the ggplotly() function of the plotly package that turn any ggplot2 chart object interactive. Note the little trick to custom the tooltip content.

# Libraries
library(ggplot2)
library(dplyr)
library(plotly)
library(viridis)
library(hrbrthemes)

# The dataset is provided in the gapminder library
library(gapminder)
data <- gapminder %>% filter(year=="2007") %>% dplyr::select(-year)

# Interactive version
p <- data %>%
  mutate(gdpPercap=round(gdpPercap,0)) %>%
  mutate(pop=round(pop/1000000,2)) %>%
  mutate(lifeExp=round(lifeExp,1)) %>%
  
  # Reorder countries to having big bubbles on top
  arrange(desc(pop)) %>%
  mutate(country = factor(country, country)) %>%
  
  # prepare text for tooltip
  mutate(text = paste("Country: ", country, "\nPopulation (M): ", pop, "\nLife Expectancy: ", lifeExp, "\nGdp per capita: ", gdpPercap, sep="")) %>%
  
  # Classic ggplot
  ggplot( aes(x=gdpPercap, y=lifeExp, size = pop, color = continent, text=text)) +
    geom_point(alpha=0.7) +
    scale_size(range = c(1.4, 19), name="Population (M)") +
    scale_color_viridis(discrete=TRUE, guide=FALSE) +
    theme_ipsum() +
    theme(legend.position="none")

# turn ggplot interactive with plotly
pp <- ggplotly(p, tooltip="text")
pp

# save the widget
# library(htmlwidgets)
# saveWidget(pp, file=paste0( getwd(), "/HtmlWidget/ggplotlyBubblechart.html"))

Related chart types


Scatter
Heatmap
Correlogram
Bubble
Connected scatter
Density 2d



❤️ 10 best R tricks ❤️

👋 After crafting hundreds of R charts over 12 years, I've distilled my top 10 tips and tricks. Receive them via email! One insight per day for the next 10 days! 🔥